![]() ![]() |
|
|||||||||||||||
反滲透又稱逆滲透,是一種以壓力差為推動力,從溶液中分離出溶劑的膜分離操作。對膜一側的料液施加壓力,當壓力超過它的滲透壓時,溶劑會逆著自然滲透的方向作反向滲透。從而在膜的低壓側得到透過的溶劑,即滲透液;高壓側得到濃縮的溶液,即濃縮液。若用反滲透處理海水,在膜的低壓側得到淡水,在高壓側得到鹵水。
因為它和自然滲透的方向相反,故稱反滲透。根據各種物料的不同滲透壓,就可以使用大于滲透壓的反滲透壓力,即反滲透法,達到分離、提取、純化和濃縮的目的。
反滲透時,溶劑的滲透速率即液流能量N為:
N=Kh(Δp-Δπ)
式中Kh為水力滲透系數,它隨溫度升高稍有增大;Δp為膜兩側的靜壓差;Δπ為膜兩側溶液的滲透壓差。
稀溶液的滲透壓π為:
π=icRT
式中i為溶質分子電離生成的離子數;c為溶質的摩爾濃度;R為摩爾氣體常數;T為*溫度。
反滲透通常使用非對稱膜和復合膜。反滲透所用的設備,主要是中空纖維式或卷式的膜分離設備。
反滲透膜能截留水中的各種無機離子、膠體物質和大分子溶質,從而取得凈制的水。也可用于大分子有機物溶液的預濃縮。由于反滲透過程簡單,能耗低,近20年來得到迅速發展?,F已大規模應用于海水和苦咸水淡化、鍋爐用水軟化和廢水處理,并與離子交換結合制取高純水,其應用范圍正在擴大,已開始用于乳品、果汁的濃縮以及生化和生物制劑的分離和濃縮方面。
反滲透技術通常用于海水、苦咸水的淡水;水的軟化處理;廢水處理以及食品、醫藥工業、化學工業的提純、濃縮、分離等方面。此外,反滲透技術應用于預除鹽處理也取得較好的效果,能夠使離子交換樹脂的負荷減輕松90%以上,樹脂的再生劑用量也可減少90%。因此,不僅節約費用,而且還有利于環境保護。反滲透技術還可用于除于水中的微粒、有機物質、膠體物,對減輕離子交換樹脂的污染,延長使用壽命都有著良好的作用。
基本原理
把相同體積的稀溶液(如淡水)和濃液(如海水或鹽水)分別置于一容器的兩側,中間用半透膜阻隔,稀溶液中的溶劑將自然的穿過半透膜,向濃溶液側流動,濃溶液側的液面會比稀溶液的液面高出一定高度,形成一個壓力差,達到滲透平衡狀態,此種壓力差即為滲透壓,滲透壓的大小決定于濃液的種類,濃度和溫度,與半透膜的性質無關。若在濃溶液側施加一個大于滲透壓的壓力時,濃溶液中的溶劑會向稀溶液流動,此種溶劑的流動方向與原來滲透的方向相反,這一過程稱為反滲透。
溶解-擴散模型
將反滲透的活性表面皮層看作為致密無孔的膜,并假設溶質和溶劑都能溶于均質的非多孔膜表面層內,各自在濃度或壓力造成的化學勢推動下擴散通過膜。溶解度的差異及溶質和溶劑在膜相中擴散性的差異影響著他們通過膜的能量大小。其具體過程分為:*步,溶質和溶劑在膜的料液側表面外吸附和溶解;第二步,溶質和溶劑之間沒有相互作用,他們在各自化學位差的推動下以分子擴散方式通過反滲透膜的活性層;第三步,溶質和溶劑在膜的透過液側表面解吸。
溶質和溶劑透過膜的過程中,一般假設*步、第三步進行的很快,此時透過速率取決于第二步,即溶質和溶劑在化學位差的推動下以分子擴散方式通過膜。由于膜的選擇性,使氣體混合物或液體混合物得以分離。而物質的滲透能力,不僅取決于擴散系數,并且決定于其在膜中的溶解度。
優先吸附—毛細孔流理論
當液體中溶有不同種類物質時,其表面張力將發生不同的變化。例如水中溶有醇、酸、醛、脂等有機物質,可使其表面張力減小,但溶入某些無機鹽,反而使其表面張力稍有增加,這是因為溶質的分散是不均勻的,即溶質在溶液表面層中的濃度和溶液內部濃度不同,這就是溶液的表面吸附現象。當水溶液與高分子多孔膜接觸時,若膜的化學性質使膜對溶質負吸附,對水是優先的正吸附,則在膜與溶液界面上將形成一層被膜吸附的一定厚度的純水層。它在外壓作用下,將通過膜表面的毛細孔,從而可獲取純水。
氫鍵理論
醋酸纖維素(一種半透膜材料)是一種具有高度有序矩陣結構的聚合物,它具有與水或醇等溶劑形成氫鍵的能力。鹽水中的水分子能與醋酸纖維素半透膜上的羰基形成氫鍵。在反滲透壓力推動的作用下,以氫鍵結合進入醋酸纖維素膜的水分子能夠由*個氫鍵位置斷裂而轉移到另一個位置形成另一個氫鍵。這些水分子通過一連串的形成氫鍵和斷裂氫鍵而不斷移位,直至離開膜的表皮層而進入多空性支撐層后,就很快地源源流出淡水。 [1]
機理模型
統一的“干閉濕開”反滲透機理模型,有幾個經典模型:
1.優先吸附毛細孔模型:弱點干態膜電鏡下,沒發現孔。濕態膜標本不是電鏡的樣品。
2.溶解擴散模型:不認為有孔。
3.干閉濕開模型:上個世紀80,90年代,解釋1和2模型的統一的現代zui貼切的逆滲透機理模型。既“干閉濕開”反滲透模型,統一了兩個zui經典的反滲透機制模型,細孔模型,溶解擴散模型。
膜干時,膜孔收縮致密,孔隙閉合,電鏡下看不到制成干態備鏡檢的干膜;
膜濕時,膜材料溶脹,膜的孔隙被溶劑溶脹,孔打開。合并就是“干閉濕開”脫鹽模型。
水處理應用
與其他傳統分離工程相比,反滲透分離過程有其獨特的優勢:(1)壓力是反滲透分離過程的主動力,不經過能量密集交換的相變,能耗低;(2)反滲透不需要多量的沉淀劑和吸附劑,運行成本低;(3)反滲透分離工程設計和操作簡單,建設周期短;(4)反滲透凈化效率高,環境友好。因此,反滲透技術在生活和工業水處理中已有廣泛應用,如海水和苦咸水淡化、醫用和工業用水的生產、純水和超純水的制備、工業廢水處理、食品加工濃縮、氣體分離等。
海水和苦咸水淡化
20世紀60年代以來,反滲透脫鹽已成為一種獲取飲用水的重要途徑,是解決淡水資源緊缺的一種有效方法。反滲透脫鹽技術主要應用在兩個方面:海水淡化和苦咸水脫鹽。
純水和超純水的制備
反滲透+混床水處理技術改進了原來的全離子交換制水工藝,運行期間,產水增加,水質改善,大幅度降低了制水成本。此外,許多科研人員均對反滲透+電去離子法制取純水進行了實驗研究,達到了預期結果,證實了反滲透+電去離子法制取高純水的可行性。通過控制反滲透的級數可制取不同純度脫鹽水。隨著反滲透級數的增加,脫鹽水的純度提高,但是出水量減少,水利用率降低,因此,反滲透裝置連用一般不會超過二級,通常將反滲透與電去離子技術聯用,不僅克服了反滲透出水不能徹底除鹽的不足,還可以提高電去離子裝置的進水水質,防止電去離子設備損壞,提高整體凈水效果。
眾農網提醒您:1)交易時請核實對方資質,對于過大宣傳或承諾需謹慎!
2)任何要求預付定金、匯款等方式均存在風險,謹防上當。